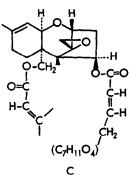
## VERTISPORIN, A NEW ANTIBIOTIC FROM VERTICIMONOSPORIUM DIFFRACTUM

Hitoshi Minato,\* Teruaki Katayama and Kazuo Tori

Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka, 553 Japan

(Received in Japan 16 May 1975; received in UK for publication 9 June 1975) In a continuing search for fungal metabolites having cytotoxic activity, we found that the fungus <u>Verticimonosporium diffractum</u>,<sup>1</sup> strains TM-2098 and TM-2492, produces a new cytotoxic antibiotic, Vertisporin<sup>2</sup>(<u>1a</u>). This antibiotic showed limited antifungal activity and inhibited only the growth of <u>Trichophyton asteroides</u> at a concentration of 10 mcg/cm<sup>3</sup>. The cytotoxicity effect (ED<sub>50</sub>) against Hela cells was 0.001 mcg/cm<sup>3</sup>.

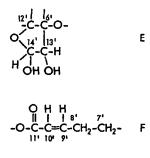

Vertisporin (1a), a colourless amorphous powder  $[C_{29}H_{36}O_{10}: M^+ 544, m.p. 176-183^\circ: [\alpha]_D^{26}+62.5$ (±1.5°),  $\lambda_{max}^{EtOH}$  216 nm ( $\epsilon$  19,500),  $\nu_{max}^{CHCl_3}$  1723 and 1717 cm<sup>-1</sup>], has two  $\alpha\beta$ -unsaturated carboxyl groupings, because a dicarboxylic acid (2a), m.p. 219-232°, was obtained by hydrolysis with an alkali. On acetylation with Ac<sub>2</sub>O in pyridine, 1a gave a diacetate (1b), m.p. 145-155°. From these results, we assumed that the remaining four oxygen atoms in 1a are present in ether-linkages. Moreover, <sup>1</sup>H-noisedecoupled natural-abundance <sup>13</sup>C FT NMR spectra of 1a and 1b in CDCl<sub>3</sub> showed twenty-nine and thirtythree <sup>13</sup>C signals, respectively; these facts agree with the elemental analysis data.

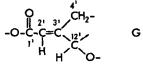
In the 220-MHz <sup>1</sup>H NMR spectrum in  $CDCl_3$ , <u>la</u> exhibited vinyl proton signals at  $\delta$  5.76 (1H, d, J = 12.0 Hz) and 6.43 (1H, d-t, J = 12.0 and 8.0 Hz), which were coupled with each other, and at  $\delta$  5.72 (1H, br-s). Thus, the presence of groupings A and B was revealed.

$$\begin{array}{ccc} O & H(\delta 5.76) & H(\delta 6.43) & O & H(\delta 5.72) \\ \parallel & 1 & & \parallel & 1 \\ -OC-C = & C-CH_2 - & A & -OC-C = C < & B \end{array}$$

On hydrolysis with KHCO<sub>3</sub> in MeOH, <u>la</u> gave a diol (<u>3a</u>), m.p. 159–161.5°, together with <u>2a</u>. Diol <u>3a</u> and its diacetate (<u>3b</u>), m.p. 84–86.5°, proved to be identical with verrucarol<sup>3</sup> and its acetate, respectively, upon comparison of their IR and <sup>1</sup>H NMR spectra. Therefore, vertisporin was classified as a new cytotoxic compound belonging to the roridin group,<sup>4</sup> and assumed to be represented by formula C.

Examination of the <sup>1</sup>H-noise-decoupled and single-frequency off-resonance decoupled <sup>13</sup>C NMR spectra of <u>1b</u> and <u>3b</u> in C<sub>6</sub>D<sub>6</sub> leads to a conclusion that seven carbon atoms of the unknown portion in <u>1a</u>,  $-(C_7H_{11}O_4)$ -, consist of -O-CH-O-,  $2 \times -CH-O-$ ,  $-CH_2-O-$ ,  $\geq C-O-$ , and  $2 \times -CH_2-$ ; the <sup>13</sup>C signals for <u>3b</u> were assigned by comparison of the spectrum with those of trichothecanes.<sup>5</sup> Further, in the 100-MHz <sup>1</sup>H NMR spectra of <u>1b</u> in CDCl<sub>3</sub>, signals due to OAc-bearing carbon atoms appear as two sharp doublets mutually coupled at  $\delta$  5.10 and  $\delta$ . $\delta$ 1 (J = 4.0 Hz). These results indicate that <u>1a</u> has a partial structure D.

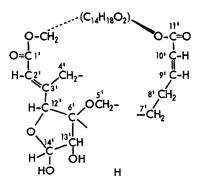



On the other hand, 2a showed absorption bands at 3470 and 1712 cm<sup>-1</sup> in the IR and an absorption maximum at 222 nm ( $\epsilon$  10,780) in the UV spectra; the low intensity of the UV maximum suggests the disappearance of one  $\alpha\beta$ -unsaturated carboxyl system in 1a. When 2a was treated with diazomethane, a dimethyl ester (2b), m.p. 129-132.5°, was obtained. The ester has one hydroxy group and one vinyl proton ( $\delta$  5.90 in CDCl<sub>3</sub>) according to IR and <sup>1</sup>H NMR spectra. Thus, we assumed that 2a is an addition product of one hydroxy group to the cis  $\alpha\beta$ -unsaturated carboxyl system.

Oxidation of 2b with dipyridine chromium (VI) oxide complex gave a five-membered ring lactone (4),  $v_{max}^{CHCl_3}$  1800 cm<sup>-1</sup>. From this result, the partial structure D can reasonably be extended to E.

Further detailed double- and triple-resonance experiments for the 100-MHz <sup>1</sup>H NMR spectra of <u>Ib</u> both in CDCl<sub>3</sub> and C<sub>6</sub>D<sub>6</sub> provided the following information. The presence of a -CH<sub>2</sub>-CH<sub>2</sub>- or a -CH<sub>2</sub>-CH-CHfragment and a -CH=C $CCH_2$ fragment can be expected by examinations of signals due to the groupings A and B, respectively, by the decoupling and INDOR techniques. Thus, partial structures A and B in formula C can be extended to F and G, respectively. In addition, the fact that the 15% enhancement in signal intensities due to the nuclear Overhauser effects was observed between the H-2' signal ( $\delta$  5.81 in

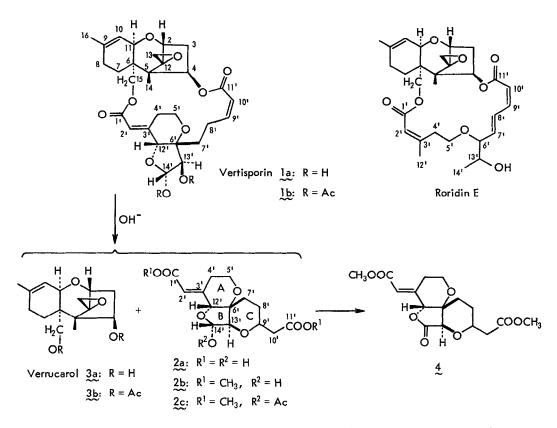





|        |                       | •                    | rentheses)"    |                           |
|--------|-----------------------|----------------------|----------------|---------------------------|
| Carbon | δ(C) <sup>b</sup>     |                      | δ(Η)           |                           |
| No.    | <u>1</u> 6            | <u>3b</u>            | <u>1</u> 6     | <u>3</u> b                |
| 2      | (79.0d) <sup>c</sup>  | (79.0d) <sup>c</sup> | 3.82d(3.66t)   | 3.80d(3.67d)              |
| 3      | (35.0+)               | (36.7t)              | f              | f                         |
| 4      | (74.0d)               | (75.4d)              | ~5.8br(5.71t)  | 3.24dd(5.81dd)            |
| 5      | (49.7s)               | (48.9s)              | -              | -                         |
| 6      | (43.2s)               | (43.4s)              | -              | -                         |
| 7      | (20.7†)               | (21 .4t)             | f              | f                         |
| 8      | (27.7t)               | (28.1+)              | f              | f                         |
| 9      | (138.4s)              | (138.7s)             | -              | -                         |
| 10     | (119.9d)              | (119.7d)             | 5.40d(5.32d)   | 5.39dd(5.36d)             |
| 11     | (67.6d) <sup>c</sup>  | (66.8d) <sup>C</sup> | 3.57d(3.21d)   | 3.75d(3.50d)              |
| 12     | (65.3s)               | (65.2s)              | -              | -                         |
| 13     | (47.2t)               | (47 .3t)             | 2.77d(2.42d)   | ,2.79d(2.43d)             |
|        |                       |                      | ່ 3.09d(2.69d) | <sup>\</sup> 3.09d(2.69d) |
| 14     | (8.0q)                | (6.8q)               | 0.80s(0.87s)   | 0.79s(0.81s)              |
| 15     | (64.7t)               | (63.7t)              | 3.97d(4.02d)   | 4.05d(4.10d)              |
|        |                       | . ,                  | 4.24d(4.27d)   | <sup>1</sup> 4.15d(4.18d) |
| 16     | (23.0q)               | (23.0q)              | 1.70s(1.45s)   | 1.70s(1.49s)              |
| 1'     | (165.7s)d             |                      | -              | • •                       |
| 2'     | (118.5d)              |                      | 5.81s(5.80s)   |                           |
| 3'     | (152.6s)              |                      | -              |                           |
| 4'     | (22.8t) <sup>e</sup>  |                      | f              |                           |
| 5'     | (64.9t)               |                      | f              |                           |
| 6'     | (86.7s)               |                      | -              |                           |
| 7'     | (23.6t) <sup>e</sup>  |                      | f              |                           |
| 8'     | (26.4t) <sup>e</sup>  |                      | f              |                           |
| 9'     | (149.4d)              |                      | 6.41dt(5.99dt) |                           |
| 10'    | (121.1d)              |                      | 5.82dd (5.68dd |                           |
| יוו    | (166.0s) <sup>d</sup> |                      | -              |                           |
| 12'    | (b0.68)               |                      | 4.19s(4.26s)   |                           |
| 13'    | (75.7d)               |                      | 5.10d(5.33d)   |                           |
| 14'    | (97.5d)               |                      | 6.61d(6.92d)   |                           |

Table. <sup>13</sup>C and <sup>1</sup>H NMR Spectral Data on Vertisporin Diacetate (<u>1b</u>) and Verrucarol Diacetate (<u>3b</u>) in CDCl<sub>3</sub> and C<sub>6</sub>D<sub>6</sub> (in parentheses)<sup>a</sup>

<sup>a</sup> All <sup>13</sup>C FT NMR spectra were measured with a Varian NV-14 FT NMR spectrometer at 15.1 MHz [ $\delta$ (C), ±0.1 ppm]; 220-MHz and 100-MHz <sup>1</sup>H NMR spectra were taken with a Varian HR-220, courtesy of Dept. of Hydrocarbon Chem., Kyoto Univ., and a Varian HA-100 spectrometer, respectively [ $\delta$ (H), ±0.02 ppm; J, ±0.5 Hz]. <sup>b</sup> Multiplicities were obtained by singlefrequency off-resonance decoupling (SFORD) experiments. The  $\delta$ (C) values in CDCl<sub>3</sub> are almost the same as those in C<sub>6</sub>D<sub>6</sub>; however, SFORD experiments were not done in CDCl<sub>3</sub>. Data on OAc are not shown. <sup>c</sup> Detailed SFORD experiments in C<sub>6</sub>D<sub>6</sub> revealed that the assignments of the C-2 and C-11 signals in trichothecanes reported by Hanson, et al.<sup>5</sup> were reversed. <sup>d</sup>, <sup>e</sup> These assignments are interconvertible. <sup>f</sup> Not exactly determinable. CDCl<sub>3</sub> and 5.80 in C<sub>6</sub>D<sub>6</sub>) and the H-12' singlet ( $\delta$  4.19 in CDCl<sub>3</sub> and 4.26 in C<sub>6</sub>D<sub>6</sub>) in 1b confirmed the stereochemical relationship shown as partial structure G. Since the <sup>13</sup>C NMR spectra, as mentioned above, indicated the presence of one more -CH<sub>2</sub>-Ogroup in the unknown portion of 1a, -(C<sub>7</sub>H<sub>11</sub>O<sub>4</sub>)-, formula C should be as represented by formula H. It is




problematical whether C-4' and C-6' bind with C-5' and C-7', respectively, or C-4' and C-5' bind with C-6' and C-7', respectively. However, in the latter case a four-membered ring must be formed; this cannot be in harmony with the present results.

On the bases of the above results and the consideration of a biosynthetic

route similar to that of roridins, formula la is derived for the plane structure of vertisporin.

Since the CD spectrum of  $\frac{2b}{22}$  showed a positive  $\pi - \pi^*$  Cotton effect,  $[\theta]_{227}^{MeOH} + 42,000$ , due to the



 $\alpha\beta$ -unsaturated ester chromophore, the configuration of H-12' is  $\beta$ .<sup>6</sup> Furthermore, the 100-MHz <sup>1</sup>H NMR spectrum of an acetate 2c in CDCl<sub>3</sub> showed four singlet signals at  $\delta$  5.93 (H-2'), 4.30 (H-12'), 3.88 (H-13'), and 6.04 (H-14'), indicating that the dihedral angles between H-2' and H-12' and between H-13' and H-14' are about 0° and 90°, respectively. Examination of molecular models shows that the only stereostructure having cis-A/B and cis-B/C ring junctures, and an  $\alpha$ -OAc at C-14' satisfies the above results. Therefore, the absolute configuration of vertisporin is elucidated to be structure 1a.

## REFERENCES

- T. Matsushima, "Microfungi of the Solomon Islands and Papua-New Guinea," p. 68, Matsushima Mycological Laboratory, Kobe, Japan, 1971.
- 2. S. Hayakawa, E. Kondo, Y. Wakisaka, H. Minato, and K. Katagiri, J. Antibiotics <u>28</u>, in press.
- J. Gutzwiller and Ch. Tamm, <u>Helv. Chim. Acta</u> <u>46</u>, 1786 (1963); J. Gutzwiller, R. Mauli, H. P. Sigg, and Ch. Tamm, <u>Ibid</u>. <u>47</u>, 2234 (1964).
- 4. Ch. Tamm, Fortschr. Chem. Org. Naturstoffe 31, 63 (1974).
- 5. J. R. Hanson, T. Morten, and M. Siverns, J.C.S. Perkin I 1033 (1974).
- 6. I. Uchida and K. Kuriyama, <u>Tetrahedron Lett.</u> 3761 (1974); A.F. Beecham, <u>Tetrahedron 27</u>, 5207 (1971); and references therein.